1.	(a)	v			
		×	✓ ✓		
		✓	×		
			column need to be correct for a mark)	2	
	(b)	(i) chloroplast;	·		
		grana / thyla	akoids;	2	
		(ii) nucleus; chromosom	es / chromatin / chromatids;	2	[6]
2.	(a)	(i) ATP used; movement i	is against a concentration gradient;	2	
			movement of ions;		
		movement of ATP / produ	of ions needs ATP; uction linked to respiration / rrier system;	max. 2	
	(b)	molecules n	centration difference / increased gradient therefore mo move in external concentration limiting factor / oncentration increases rate;	re 1	
		limited num	sed in situation B by) nber of molecules can move through the pores in unit tall / number of pores is limiting factor;	ime /	[6]
3.	(a)		rrect answer of 3000; er obtained by dividing actual length by 20 m;	2	
	(b)	(i) Letter A inc	licating cytoplasm;	1	
		(ii) Letter B ind	licating ribosome;	1	
	(c)	by electron/hydrog	ATP synthesis/oxidative phosphorylation; gen carriers; res energy input/ATP;	max 2	[6]
4.	(a)		marks (<i>Allow 3.9 - 4. 1</i>) f scaling, but incorrect conversion to micrometres = 1	2	
	(b)	(i) not in nucleus /	single (loop) chromosome.	1	

		(ii)	not attached to ER / smaller (70S).	1	
		(iii)	not in mitochondria / attached to mesosomes.	1	
	(c)	increases concentration (of solutes) inside bacteria / decreases water potential inside bacteria; less / no net water loss to external solution <u>or</u> uptake of water to more conc. solution inside.			[7]
5.	(a)	Bacteria do not have a nucleus/nuclear membrane, eukaryote does; Bacteria do not have membrane-bound organelles, eukaryote does; Bacteria do not have mitochondiia, eukaryote does; Bacteria has 70S/smaller ribosomes, eukaryote has 80S/larger; Bacteria] cell-, have murein/peptidoglycan cell wall, eukaryotes do not Bacterial cells are very much smaller than eukaryotic cells; Bacteria have circular DNA, eukaryotes have linear DNA; Bacteria may have capsules, eukaryotes do not;			
	(b)	(i) (ii) (iii)	flagellum ribosome plasmid	3	
					[5]
6.	(a)	(i)	Crista	1	
		(ii)	(Mitochondria) provide energy / ATP; liver cells have high energy requirement for metabolism- reactions specific liver function, eg. glycogen synthesis or deamination (not just: active transport/ growth)	2	
		(iii)	Principle - protein synthesis; Function of protein in mitochondria - e.g. synthesis of (respiratory) enzymes / growth / repair / replication. or:		
			DNA has genetic information; ribosomes produce proteins / allows replication of mitochondria.	2	
	(b)		ntain concentrations/water potential same inside & outside (cells / chondria) / prevent osmosis;		
			ent bursting / shrinkage of mitochondria/organelles (not cells)	2	

	(c)	Eukaryotic ribosomes denser/ heavier (not just 'larger').	1	[8]
7.	(a)	(i) Nucleus;	1	
		(ii) Correct answer $(3\mu m = 2 \text{ marks})$ error with measurement, but clearly derived by dividing drawing size by magnification = 1 mark;	2	
	(b)	(i) Ice-cold – prevents <u>enzymes</u> working/autolysis/ <u>self</u> digestion;		
		(ii) Isotonic – prevents osmotic effects to organelles/osmosis/bursting/ shrinking;	2	
	(c)	A; Nucleus is largest/densest/heaviest organelle (sediments first/lowest spin speed); (Reject reference to plant organelles/cell wall)		
	(d)	O_2 uptake / ATP production / CO_2 production (not respiration / heat);	1	[8]
8.	(a)	A ribosome (<i>RER neutral</i>);	1	
	. ,	B vacuole;	1	
		C smooth ER / SER;	1	
	(b)	(i) support / strength / shape / prevents osmotic lysis; (protection, permeability neutral)	1	
		(ii) photosynthesis / light energy → chemical energy; (makes food/sugar neutral)	1	
	(c)	0.2 – 0.24 gains 2 marks; ELSE evidence of observed measurement (5 – 6 mm / 0.5 – 0.6 cm) ÷ 25 000		
		gains one mark;	2	[7]

9.	(a)	(i)	microvilli; (reject brush border)	1	
		(ii)	increased surface area (for diffusion);	1	
	(b)	(i)	$\frac{16 \times (1000)}{0.1}$ / principle of $\frac{\text{measuring scale bar}}{\text{dividing by } 0.1}$; (15 –17 tolerance)		
			160000; (correct answer award 2 marks)	2	
		(ii)	electron microscope has a greater resolving power / objects closer together can be distinguished; electron (beams) have a shorter wavelength;	2	
	(c)	short	t diffusion pathway /short pathway to the centre / large SA:V ratio		
		for fa	aster, more diffusion;	1	[7]
10.	(a)	Glyc	erol / glyceride;	1	
	(b)	(i)	Phospholipid has (one) phosphate / Phosphoric acid; replacing fatty acid;	2	
		(ii)	Saturated – all valencies of C filled / saturated with hydrogen / all (C-single bonds / no double bonds;	-C)	
			fatty acid 1 is saturated/fatty acids 2 and 3 are unsaturated;	2	[5]
11.	(a)	Add	sh in) ethanol / alcohol; (to) water (<i>Order of adding is critical for this point</i>); lsion / white colour;	3	
	(b)	(i)	Glycerol / glyceride;	1	
		(ii)	Phospholipid has phosphate / phospholipid only has two fatty acids;	1	
		(iii)	Phosphorus / P;	1	
	(c)	(i)	Both membranes contain phospholipid / lipid (bilayer);	1	
		(ii)	Glucose unable to pass through artificial membrane as not lipid solub. Glucose transported by proteins; (Proteins) found in plasma membrane /	le;	
			not found in artificial membrane;	max 2	[9]
12		<i>(</i> :\			
12.	(a)	(i)	4; Not made of identical unite/monomers/mode of fetty saids and alvae	1	
		(ii)	Not made of identical units/ monomers/ made of fatty acids and glyce	rol; 1	

	(b)	(i)	A O(xygen); B C(arbon);	2	
		(ii)	No double bonds/ every carbon joined to two hydrogens/ four-other atom	s; 1	
	(c)	(i)	2 marks - Correct answer of 0.0000025/ 2.5×10^{-6} ;;		
			1 mark - Incorrect answer but clearly derived from volume divided by surface area; [Note: Assume units are mm unless otherwise stated]	2	
		(ii)	Head hydrophilic/ attracted to water/ polar; Tail hydrophobic/ avoids/ shuns water/ non-polar; [Allow: only one mark for limited references to "loving" and "hating" water]	2	
					[9]
13.	(a)	(i)	More "free" water molecules outside cell / in distilled water; water molecules inside cell "bound" to solute molecules; link between water molecules, pressure they exert and water potential; water potential of distilled water =0; presence of solute reduces water potential;	ax 2	
		(ii)	Partially permeable / only allows water molecules through / does not allow solute molecules though;	1	
	(b)	move	ewe / does not require ATP; R energy not required ement down gradient; R across not require carrier molecules / not facilitated; materials	ax 2	[5]
14.	(a)		all alveoli with) large surface area; liffusion;	2	
	(b)	(i)	Epithelium / epithelial/squamous/pavement cells; Reject endothelium.	1	
		(ii)	0.11 μm;	1	
	(c)	(i)	Less oxygen / more carbon dioxide / more water vapour; Two differences required, but only one mark for this part of the question.	1	
		(ii)	Gas exchange takes place in alveoli / does not take place in trachea;	1	

	(d)	(i)	Pulmonary artery;	1	
		(ii)	Concentrations reach equilibrium/become equal; Diffusion occurs when there is a concentration gradient (so some will remain in blood); OR Lung cells/vessel cells respire; Add/produce carbon dioxide;	2	[9]
15.	(a)	former permallow make mem	of the following: (water) impermeable barrier to water-soluble substances / selectively leable / allows non-polar molecules to pass through; we cell to maintain different concentrations either side; as membranes self-sealing/able to fuse with other branes/able to form the les / gives flexibility/fluidity;	2 max	
	(b)		ace/extrinsic protein) for cell recognition / binding to nones/identification	1	
	(c)	(i)	involves carrier/transmembrane/transport proteins; (reject channel proteins)	1	
		(ii)	requires energy/requires use of ATP / moves substances/ions/molecule against a concentration gradient;	es 1	
		(iii)	the curve levels off above a certain external concentration of substance as channel proteins are saturated with molecules (and no more can be carried);	e; 2	[7]
16.	(a)		tive water / sewage treatment / prevent water contamination / oved hygiene / vaccination / quarantining of affected area; (any two)	1	
	(b)	repla OR drink	rehydration therapy/ORT; ces lost water and salts; ting large amounts of water; salts/minerals;	2	

(c)	(i)	(protein/poison) excreted / secreted by bacteria;	1	
	(ii)	receptor / proteins on membrane; complementary shape of exotoxin;	2	
(d)	(i)	active transport; using ATP / carrier proteins;	2	
	(ii)	higher solute concentration / water potential lowered in small intestine; osmotic loss of water;	2	[10]